Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.199
Filtrar
1.
Animal ; 18(4): 101130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579665

RESUMO

To maximize the efficiency of dietary P utilization in swine production, understanding the mechanisms of P utilization in lactating sows is relevant due to their high P requirement and the resulting high inorganic P intake. Gaining a better knowledge of the Ca and P quantities that can be mobilized from bones during lactation, and subsequently replenished during the following gestation, would enable the development of more accurate P requirements incorporating this process of bone dynamics. The objective was to measure the amount of body mineral reserves mobilized during lactation, depending on dietary digestible P and phytase addition and to measure the amount recovered during the following gestation. Body composition of 24 primiparous sows was measured by dual-energy x-ray absorptiometry 2, 14, 26, 70 and 110 days after farrowing. Four lactation diets were formulated to cover nutritional requirements, with the exception of Ca and digestible P: 100% (Lact100; 9.9 g Ca and 3.0 g digestible P/kg), 75% (Lact75), 50% without added phytase (Lact50) and 50% with added phytase (Lact50 + FTU). The gestation diet was formulated to cover the nutritional requirements of Ca and digestible P (8.2 g Ca and 2.6 g digestible P/kg). During the 26 days of lactation, each sow mobilized body mineral reserves. The mean amount of mobilized bone mineral content (BMC) was 664 g, representing 240 g Ca and 113 g P. At weaning, the BMC (g/kg of BW) of Lact50 sows tended to be lower than Lact100 sows (-12.8%, linear Ca and P effect × quadratic time effect) while the BMC of Lact50 + FTU sows remained similar to that of Lact100 sows. During the following gestation, BMC returned to similar values among treatments. Therefore, the sows fed Lact50 could recover from the higher bone mineral mobilization that occurred during lactation. The P excretion was reduced by 40 and 43% in sows fed Lact50 and Lact50 + FTU, respectively, relative to sows fed Lact100. In conclusion, the quantified changes in body composition during the lactation and following gestation of primiparous sows show that bone mineral reserves were mobilized and recovered and that its degree was dependent on the dietary P content and from phytase supplementation during lactation. In the future, considering this potential of the sows' bone mineralization dynamics within the factorial assessment of P requirement and considering the digestible P equivalency of microbial phytase could greatly limit the dietary use of inorganic phosphates and, thus, reduce P excretion.


Assuntos
6-Fitase , Fósforo na Dieta , Feminino , Animais , Suínos , Cálcio , Lactação , Calcificação Fisiológica , 6-Fitase/metabolismo , Dieta/veterinária , Cálcio da Dieta , Minerais , Ração Animal/análise , Fósforo/metabolismo
2.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474744

RESUMO

Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/metabolismo , Fósforo/metabolismo , Vitamina K/uso terapêutico , Alimentos
3.
Sci Total Environ ; 926: 172018, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547988

RESUMO

The improper disposal of large amounts of phosphogypsum generated during the production process of the phosphorus chemical industry (PCI) still exists. The leachate formed by phosphogypsum stockpiles could pose a threat to the ecological environment and human health. Nevertheless, information regarding the harmful effects of phosphogypsum leachate on organisms is still limited. Herein, the physicochemical characteristics of phosphogypsum leachate were analyzed, and its toxicity effect on zebrafish (Danio rerio), particularly in terms of hepatotoxicity and potential mechanisms, were evaluated. The results indicated that P, NH3-N, TN, F-, As, Cd, Cr, Co, Ni, Zn, Mn, and Hg of phosphogypsum leachate exceeded the V class of surface water environmental quality standards (GB 3838-2002) to varying degrees. Acute toxicity test showed that the 96 h LC50 values of phosphogypsum leachate to zebrafish was 2.08 %. Under exposure to phosphogypsum leachate, zebrafish exhibited concentration-dependent liver damage, characterized by vacuolization and infiltration of inflammatory cells. The increased in Malondialdehyde (MDA) content and altered activities of antioxidant enzymes in the liver indicated the induction of oxidative stress and oxidative damage. The expression of apoptosis-related genes (P53, PUMA, Caspase3, Bcl-2, and Bax) were up-regulated at low dosage group and down-regulated at medium and high dosage groups, suggesting the occurrence of hepatocyte apoptosis or necrosis. Additionally, phosphogypsum leachate influenced the composition of the zebrafish gut microbiota by reducing the relative abundance of Bacteroidota, Aeromonas, Flavobacterium, Vibrio, and increasing that of Rhodobacter and Pirellula. Correlation analysis revealed that gut microbiota dysbiosis was associated with phosphogypsum leachate-induced hepatotoxicity. Altogether, exposure to phosphogypsum leachate caused liver damage in zebrafish, likely through oxidative stress and apoptosis, with the intestinal flora also playing a significant role. These findings contribute to understanding the ecological toxicity of phosphogypsum leachate and promote the sustainable development of PCI.


Assuntos
Sulfato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Estresse Oxidativo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466444

RESUMO

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Assuntos
Arsênio , Basidiomycota , Metais Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38431846

RESUMO

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.


Assuntos
Bacteriófagos , Synechococcus , Synechococcus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Transporte
6.
Bioresour Technol ; 398: 130512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437960

RESUMO

The reuse of wastewater after seawater cultivation is critically important. In this study, a phosphorus-supplemented seawater-wastewater cyclic system (PSSWCS) based on Chlorella pyrenoidosa SDEC-35 was developed. With the addition of phosphorus, the algal biomass and the ability to assimilate nitrogen and carbon were improved. At the nitrogen to phosphorus ratio of 20:1, the biomass productivity per mass of nitrogen reached 3.6 g g-1 (N) day-1 in the second cycle. After the third cycle the protein content reached 35.7% of dry mass, and the major metabolic substances in PSSWCS reached the highest content level of 89.5% (35.7% protein, 38.3% lipid, and 15.5% carbohydrate). After the fourth cycle the lipid content maintained at 40.1%. Furthermore, 100.0% recovery of wastewater in PSSWCS increased the nitrogen and carbon absorption to 15.0 and 396.8 g per tonne of seawater. This study achieved seawater-wastewater recycle and produced high-lipid and high-protein algae by phosphorus addition.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Biomassa , Nitrogênio/metabolismo , Água do Mar , Fósforo/metabolismo , Lipídeos , Carbono/metabolismo
7.
Harmful Algae ; 133: 102587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485437

RESUMO

Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.


Assuntos
Cianobactérias , Microcystis , Microcystis/genética , Peróxido de Hidrogênio/metabolismo , Cianobactérias/genética , Nitrogênio/metabolismo , Fósforo/metabolismo
8.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461906

RESUMO

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Assuntos
Células Estreladas do Fígado , Hepatopatias , Ratos , Animais , Sevelamer/efeitos adversos , Antioxidantes/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Fósforo/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
9.
Physiol Plant ; 176(2): e14262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522857

RESUMO

Soybean (Glycine max) is economically significant, but the mechanisms underlying its adaptation to simultaneous low phosphorus and salt stresses are unclear. We employed the Shennong 94-1-8 soybean germplasm to conduct a comprehensive analysis, integrating both physiochemical and transcriptomic approaches, to unravel the response mechanisms of soybean when subjected to simultaneous low phosphorus and salt stresses. Remarkably, the combined stress exhibited the most pronounced impact on the soybean root system, which led to a substantial reduction in total soluble sugar (TSS) and total soluble protein (TSP) within the plants under this treatment. A total of 20,953 differentially expressed genes were identified through pairwise comparisons. Heatmap analysis of genes related to energy metabolism pathways demonstrated a significant down-regulation in expression under salt and low phosphorus + salt treatments, while low phosphorus treatment did not exhibit similar expression trends. Furthermore, the weighted gene co-expression network analysis (WGCNA) indicated that the blue module had a strong positive correlation with TSS and TSP. Notably, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase 1, FCS-Like Zinc finger 8, auxin response factor 18 isoform X2, and NADP-dependent malic enzyme emerged as hub genes associated with energy metabolism. In summary, our findings indicate that soybean roots are more adversely affected by salt and combined stress than by low phosphorus alone due to reduced activity in energy metabolism-related pathways and hub genes. These results offer novel insights into the adaptive mechanisms of soybeans when facing the combined stress of low phosphorus and salinity.


Assuntos
Soja , Estresse Fisiológico , Soja/genética , Estresse Fisiológico/genética , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Perfilação da Expressão Gênica , Metabolismo Energético/genética , Fósforo/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Environ Sci Technol ; 58(12): 5405-5418, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483317

RESUMO

Per- and polyfluoroalkyl substances (PFASs), with significant health risks to humans and wildlife, bioaccumulate in plants. However, the mechanisms underlying plant uptake remain poorly understood. This study deployed transcriptomic analysis coupled with genetic and physiological studies using Arabidopsis to investigate how plants respond to perfluorooctanesulfonic acid (PFOS), a long-chain PFAS. We observed increased expressions of genes involved in plant uptake and transport of phosphorus, an essential plant nutrient, suggesting intertwined uptake and transport processes of phosphorus and PFOS. Furthermore, PFOS-altered response differed from the phosphorus deficiency response, disrupting phosphorus metabolism to increase phosphate transporter (PHT) transcript. Interestingly, pht1;2 and pht1;8 mutants showed reduced sensitivity to PFOS compared to that of the wild type, implying an important role of phosphate transporters in PFOS sensing. Furthermore, PFOS accumulated less in the shoots of the pht1;8 mutant, indicating the involvement of PHT1;8 protein in translocating PFOS from roots to shoots. Supplementing phosphate improved plant's tolerance to PFOS and reduced PFOS uptake, suggesting that manipulating the phosphate source in PFOS-contaminated soils may be a promising strategy for minimizing PFOS uptake by edible crops or promoting PFOS uptake during phytoremediation. This study highlighted the critical role of phosphate sensing and transport system in the uptake and translocation of PFOS in plants.


Assuntos
Ácidos Alcanossulfônicos , Arabidopsis , Fluorocarbonos , Humanos , Fosfatos , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
11.
Water Res ; 254: 121378, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430758

RESUMO

This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.


Assuntos
Fósforo , Esgotos , Esgotos/química , Osmose , Fósforo/metabolismo , Nitrogênio , Digestão , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
12.
J Environ Manage ; 356: 120631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522275

RESUMO

In this work the effects of nutrient availability and light conditions on CO2 utilization and lipid production in Micractinium pusillum KMC8 is reported. The study investigated the ideal nitrogen concentrations for growth and nitrogen utilization in a 15% CO2 environment. Logistic and Gompertz models were employed to analyze the kinetics of KMC8 cell growth. Compared to 17.6 mmol L-1 control nitrogen, which generated 1.6 g L-1 growth, doubling and quadrupling nitrogen concentrations boosted biomass growth by 12.5% and 28.78%. At 8.6 mmol L-1 nitrogen, the growth decreased but lipid productivity increased to 18.62 mg L-1 day-1. At 70.6 mmol L-1 nitrogen, elevated nitrogen levels maintained an alkaline pH above 7 and enhanced CO2 mitigation, achieving 2.27% CO2 utilization efficiency. Nitrogen shows a positive correlation with higher rates of carbon and nitrogen fixation. The investigation extends to find out the influence of phosphorus and light conditions on microalgae. Increasing light intensity incrementally from 150 to 1200 µmol m-2 s-1 with more phosphorus increased biomass productivity by 85% (255 mg L-1 day-1) and lipid productivity by 2.5-fold (84.76 mg L-1 day-1), with 3.3% CO2 utilization efficiency compared to directly using 1200 µmol m-2 s-1. This study suggests a water recycling-fed batch cycle with gradual light feeding, which results in high CO2 fixation (1.1 g L-1 day-1), 7% CO2 utilization, and significant biomass and lipid productivity (577.23 and 150 mg L-1 day-1). This approach promotes lipid synthesis, maintains carbon fixation, and minimizes biomass loss, thus supporting sustainable bioenergy development in a circular bio-economy framework.


Assuntos
Microalgas , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Nutrientes , Lipídeos
13.
Curr Microbiol ; 81(3): 87, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311653

RESUMO

Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease. Upon inoculation, T. asperellum mainly colonized within the phloem of the roots in soybean seedlings, while I. laceratus mainly in the xylem and phloem of the roots. Physiological parameters, such as plant height, root length, and fresh weight, were significantly increased in soybean seedlings co-inoculated with T. asperellum and I. laceratus. Moreover, the expression of key genes related to N and P absorption and metabolism was also increased, leading to improved N and P utilization efficiency in soybean seedlings. These results indicate that the two fungi may have complementary roles in promoting plant growth, co-inoculation with T. asperellum and I. laceratus can enhance the growth and nutrient uptake of soybean. These findings suggest that T. asperellum and I. laceratus have the potential to be used as bio-fertilizers to improve soybean growth and yield.


Assuntos
Basidiomycota , Hypocreales , Polyporales , Trichoderma , Plântula , Fósforo/metabolismo , Soja , Nitrogênio/metabolismo , Basidiomycota/metabolismo , Polyporales/metabolismo , Trichoderma/fisiologia
14.
Water Res ; 252: 121234, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310803

RESUMO

The stringent effluent quality standards in wastewater treatment plants (WWTPs) can effectively mitigate environmental issues such as eutrophication by reducing the discharge of nutrients into water environments. However, the current wastewater treatment process often struggles to achieve advanced nutrient removal while also saving energy and reducing carbon consumption. The first full-scale anaerobic/aerobic/anoxic (AOA) system was established with a wastewater treatment scale of 40,000 m3/d. Over one year of operation, the average TN and TP concentration in the effluent of 7.53 ± 0.81 and 0.37 ± 0.05 mg/L was achieved in low TN/COD (C/N) ratio (average 5) wastewater treatment. The post-anoxic zones fully utilized the internal carbon source stored in pre-anaerobic zones, removing 41.29 % of TN and 36.25 % of TP. Intracellular glycogen (Gly) and proteins in extracellular polymeric substances (EPS) served as potential drivers for post-anoxic denitrification and phosphorus uptake. The sludge fermentation process was enhanced by the long anoxic hydraulic retention time (HRT) of the AOA system. The relative abundance of fermentative bacteria was 31.66 - 55.83 %, and their fermentation metabolites can provide additional substrates and energy for nutrient removal. The development and utilization of internal carbon sources in the AOA system benefited from reducing excess sludge production, energy conservation, and advanced nutrient removal under carbon-limited. The successful full-scale validation of the AOA process provided a potentially transformative technology with wide applicability to WWTPs.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Fósforo/metabolismo , Nutrientes , Carbono , Nitrogênio , Desnitrificação
15.
Environ Sci Technol ; 58(6): 2786-2797, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311839

RESUMO

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismo
16.
Sci Total Environ ; 922: 171269, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423323

RESUMO

Soil biogeochemical cycles are essential for regulating ecosystem functions and services. However, little knowledge has been revealed on microbe-driven biogeochemical processes and their coupling mechanisms in soil profiles. This study investigated the vertical distribution of soil functional composition and their contribution to carbon (C), nitrogen (N) and phosphorus (P) cycling in the humus horizons (A-horizons) and parent material horizons (C-horizons) in Udic and Ustic Isohumosols using shotgun sequencing. Results showed that the diversity and relative abundance of microbial functional genes was influenced by soil horizons and soil types. In A-horizons, the relative abundances of N mineralization and liable C decomposition genes were significantly greater, but the P cycle-related genes, recalcitrant C decomposition and denitrification genes were lower compared to C-horizons. While, Ustic Isohumosols had lower relative abundances of C decomposition genes but higher relative abundances of N mineralization and P cycling-related pathways compared to Udic Isohumosols. The network analysis revealed that C-horizons had more interactions and stronger stability of functional gene networks than in A-horizons. Importantly, our results provide new insights into the potential mechanisms for the coupling processes of soil biogeochemical cycles among C, N and P, which is mediated by specific microbial taxa. Soil pH and carbon quality index (CQI) were two sensitive indicators for regulating the relative abundances and the relationships of functional genes in biogeochemical cycles. This study contributes to a deeper understanding of the ecological functions of soil microorganisms, thus providing a theoretical basis for the exploration and utilization of soil microbial resources and the development of soil ecological control strategies.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Nitrogênio/análise , Carbono/metabolismo , Fósforo/metabolismo , Concentração de Íons de Hidrogênio
17.
Water Res ; 253: 121261, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367373

RESUMO

Fully anoxic suspended growth treatment of domestic wastewater is rarely performed in practice at large scale. However, recent advances in membrane aerated biofilm reactor (MABR) technology can enable the "hybrid" concept that couples nitrification in the MABR with anoxic suspended growth for biological nitrogen removal. Small scale sequencing batch reactors were constructed to compare high-rate anoxic metabolization of influent carbon and biological phosphorus removal side-by-side with a conventional aerated system in a low-strength domestic wastewater (COD/TN ratio of approximately 6). Little differences existed in the oxidation of soluble readily biodegradable organic material between the two systems, but hydrolysis of particulate and colloidal organic matter in the anoxic reactor over a range of solid retention times was 60 % of the aerobic reactor. Reduced hydrolysis limited the amount of carbon available to ferment to volatile fatty acid (VFA), adversely impacting anoxic biological phosphorus removal (bio-P) process rates, and ortho-P removal performance was diminished by more than half at equivalent SRTs. At optimal growth conditions, i.e., an SRT of approximately 8 days and with supplementary VFA, ortho-P removal from the influent averaged roughly 75 %. Experimentation with supplemented acetic acid showed reduced anoxic metabolic efficiency, quantified via a P/O ratio of 0.90 versus 1.7 for the aerobic system, although overall anoxic bio-P removal demonstrably increased with external carbon.


Assuntos
Fósforo , Águas Residuárias , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Nitrificação , Carbono , Reatores Biológicos , Nitrogênio/metabolismo , Desnitrificação
18.
Biochem J ; 481(5): 363-385, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38421035

RESUMO

The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.


Assuntos
Fosfatos , Fósforo , Fosfatos/metabolismo , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de Plantas
19.
Water Environ Res ; 96(3): e11002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403998

RESUMO

Eutrophication, the over-enrichment with nutrients, for example, nitrogen and phosphorus, of ponds, reservoirs and lakes, is an urgent water quality issue. The most notorious symptom of eutrophication is a massive proliferation of cyanobacteria, which cause aquatic organism death, impair ecosystem and harm human health. The method considered to be most effective to counteract eutrophication is to reduce external nutrient inputs. However, merely controlling external nutrient load is insufficient to mitigate eutrophication. Consequently, a rapid diminishing of cyanobacterial blooms is relied on in-lake intervention, which may encompass a great variety of different approaches. Coagulation/flocculation is the most used and important water purification unit. Since cyanobacterial cells generally carry negative charges, coagulants are added to water to neutralize the negative charges on the surface of cyanobacteria, causing them to destabilize and precipitate. Most of cyanobacteria and their metabolites can be removed simultaneously. However, when cyanobacterial density is high, sticky secretions distribute outside cells because of the small size of cyanobacteria. The sticky secretions are easily to form complex colloids with coagulants, making it difficult for cyanobacteria to destabilize and resulting in unsatisfactory treatment effects of coagulation on cyanobacteria. Therefore, various coagulants and coagulation methods were developed. In this paper, the focus is on the coagulation of cyanobacteria as a promising tool to manage eutrophication. Basic principles, applications, pros and cons of chemical, physical and biological coagulation are reviewed. In addition, the application of coagulation in water treatment is discussed. It is the aim of this review article to provide a significant reference for large-scale governance of cyanobacterial blooms. PRACTITIONER POINTS: Flocculation was a promising tool for controlling cyanobacteria blooms. Basic principles of four kinds of flocculation methods were elucidated. Flocculant was important in the flocculation process.


Assuntos
Cianobactérias , Ecossistema , Humanos , Cianobactérias/metabolismo , Qualidade da Água , Lagos/química , Lagoas , Eutrofização , Fósforo/metabolismo
20.
Physiol Plant ; 176(2): e14225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38423794

RESUMO

Paramichelia baillonii is a rare and fast-growing tree species in subtropical China. The acidic red soil in southern China severely limits its growth as it lacks sufficient available phosphorus (P), resulting in declining soil fertility and nutrient availability. The effect of P deficiency on P. Baillonii growth, root attributes, and physiological response has not yet been reported. Understanding the adaptability of P. baillonii to low-P conditions can improve afforestation and soil management in southern China. Therefore, we conducted a pot experiment on 2-year-old saplings and treated them with different P levels. Results showed that P deficiency (0-5 mg L-1 ) decreased growth attributes, root morphological traits, and nutrient uptake of P. baillonii saplings compared to control (CK). Similarly, reduction in chlorophyll a, b, total chlorophyll, net photosynthetic rate (Pn), transpiration rate (Tr), and Gs were seen in low P treatment saplings compared to CK. Whereas superoxide dismutase, peroxidase, malondialdehyde, acid phosphatase activity, and soluble protein content increased with increasing P-deficiency up to 5 mg L-1 , and soluble sugar showed oppsite trend. Moreover, the proteomics analysis identified 2721 proteins, 196 showing differential expression, with 90 up- and 106 down-regulated. Importantly, the metabolic activities increased in the pentose phosphate pathway, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and phenylpropanoid biosynthesis pathways to sustain regular plant growth under P deficiency. This study delves into the dynamic morpho-physiological and proteomic changes in response to P deficiency. Overall, growth and nutrient uptake were reduced, countered by adaptive biochemical and proteomic shifts, including heightened antioxidant activities and modifications in metabolic pathways, highlighting the resilient strategies of P. baillonii saplings under P deficiency.


Assuntos
Fósforo , Proteômica , Fósforo/metabolismo , Clorofila A , Solo , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...